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The colocalization transition of homologous chromosomes at meiosis
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Meiosis is the specialized cell division required in sexual reproduction. During its early stages, in the mother
cell nucleus, homologous chromosomes recognize each other and colocalize in a crucial step that remains one
of the most mysterious of meiosis. Starting from recent discoveries on the system molecular components and
interactions, we discuss a statistical mechanics model of chromosome early pairing. Binding molecules medi-
ate long-distance interaction of special DNA recognition sequences and, if their concentration exceeds a critical

threshold, they induce a spontaneous colocalization transition of chromosomes, otherwise independently

diffusing.
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At the onset of meiosis—the specialized cell division pro-
ducing cells (gametes) with half the genetic content of the
mother—homologous chromosomes in the cell nucleus asso-
ciate in couples via a process involving a long-distance rec-
ognition of “self” followed by a gradual alignment. Such a
process is crucial for preventing fertility problems, birth de-
fects, and cancer, but it remains one of the most mysterious
aspects of meiosis [1-4]. Although substantial variation
among organisms exists, some of the essential elements in-
volved in pairing are conserved. Yet we still do not know
how they generate self-recognition and colocalization. Start-
ing from recent experimental hints on the molecular basis,
we discuss here a statistical mechanics model explaining the
mechanical features of early pairing and their active control
by the cell.

At meiosis, paired homologs systematically exchange
DNA strands in a process known as genetic recombination,
which is initiated by DNA double-strand breaks (DSBs). A
long-standing hypothesis proposes, thus, that pairing is DSB-
related, for instance by a direct physical interactions between
DNA homologous duplexes. While alternative scenarios
were discussed (see, e.g., [5]), recent experiments have
changed such a picture: DSBs are required for attaining full
alignment, but the early stages of homolog pairing appear to
be DSBs independent in many organisms (as seen in fungi,
plants, and higher animals [1-4,6]). In particular, recent re-
sults on model organisms such as C. elegans and Drosophila
shed new light on DSB-independent pairing mechanisms
[7-10]. In C. elegans, homologs colocalization is known to
depend on special recognition regions at their ends (telom-
eric regions), known as “pairing centers” (PCs) [11-13]. At
the early stages of meiosis, in early prophase I, special DNA
binding proteins, HIM/ZIM (in the class of “zinc fingers”),
localize to their corresponding PC and mediate their pairing
[14]. Similarly, in Drosophila, clusters of a 240-base-pair
repeat sequence at a specific location on the X and Y chro-
mosomes, and analogous sites on nonsex chromosomes, act
as a pairing center (see Refs. [2,3]); and special proteins,
such as MNM and SNM (also a zinc finger), binding X-Y
and nonsex chromosome pairing sites at prophase I, are nec-
essary to observe pairing [15]. Another “universal” feature of

1539-3755/2008/77(6)/061913(4)

061913-1

PACS number(s): 87.14.G—, 64.60.Cn, 82.39.Rt, 87.15.A—

prophase I is telomere tethering to the nuclear envelope,
which is considered to be intimately related to pairing [1-4].
Such a picture, where early recognition is mediated by spe-
cial chromosomal regions (“pairing centers”) in interaction
with a set of specific proteins, is interestingly found across
organisms [1-4]. Nevertheless, the likelihood of random
contacts of homologous recognition elements is negligible,
so the “Maxwell’s demon” [11] responsible for homology
sensing and colocalization remains elusive.

Here we discuss a statistical mechanics model that incor-
porates the minimal physical elements revealed by experi-
ments, i.e., DNA pairing sequences and molecules binding
them. These elements are shown to be sufficient to chromo-
some colocalization as binding molecules can induce an ef-
fective attraction between DNA recognition sequences: when
the concentration of molecules, or DNA chemical affinity,
exceeds a given threshold, a phase transition occurs (in a
finite-sized system) and homologs are spontaneously joined
together, otherwise they move independently. Our model is
very schematic and many complexities are not considered,
yet such a “thermodynamic switch” is robust, irrespective of
its ultimate molecular and biochemical basis; its aim is to
delineate a simple conceptual framework and the key ingre-
dients necessary to the early events in colocalization.

Model. Our model (see right panels in Fig. 2) consists of
a pair of identical chromosome segments, involved in recog-
nition, and a concentration, ¢, of molecular factors having a
chemical affinity, Ey, for them. For the sake of simplicity, we
ignore the rest of the chromosomes, and DNA segments are
described as directed polymers in resemblance to DNA te-
lomeres tethering to the nuclear envelope at meiosis [16]. In
our Monte Carlo computer simulations [17], molecules and
polymers diffuse in a cubic lattice with spacing d, (of the
order of the unknown molecular factors length) and linear
sizes L,=2L, L,=L, and L,=L (in units of d;). DNA seg-
ments are dealt with as a string of L nonoverlapping “beads”
diffusing under the constraint that two proximal beads must
be on next or next-nearest-neighboring sites on the lattice (on
each vertex, no more than one particle can be present at a
given time). Chromosomal beads interact, via an effective
energy Ey, with neighboring molecules which, in turn, can
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bind both polymers at the same time, as suggested by a num-
ber of mediating proteins discovered to date, e.g., ZIM/HIM
in C. elegans having many DNA binding domains. In order
to stress that “weak” biochemical bonds are sufficient to hold
in place whole chromosomes, here we mostly focus on the
example in which Ey is of the order of a weak hydrogen
bond, say 3 kJ/mol or Ey=1.2kT at room temperature [18].

Finally, we shall also briefly discuss the case in which
molecular mediators can form complexes, i.e., interact with
nearest-neighbor molecules via a reciprocal affinity E;, but
now we set Ey=0. In our simulations, the “beads” of the
chromosomal segments initially form two straight vertical
lines, at a distance L from each other, and molecular media-
tors are randomly distributed. The size of our lattice is L
=16 (we checked our results for L as large as 128) with
periodic boundary conditions. Averages are over up to 2048
runs from different initial configurations, and time is given in
units of Monte Carlo lattice sweeps [17]. The probability of
a particle moving to a neighboring empty site is proportional
to the Arrhenius factor ry exp(~AE/kT), where AE is the
energy barrier in the move, k is the Boltzmann constant, and
T is the temperature [18,19]. For the reaction collision rate,
ro (depending on the nature of the molecular factors and of
the surrounding viscous fluid), we use r,=30 s~!, a typical
value in biochemical kinetics.

Colocalization dynamics. Although molecular mediators
can have a weak affinity for chromosomes, say Ey=1.2kT,
they can collectively induce an effective attraction between
them: if ¢ is above a threshold value, the effective interaction
is strong enough to result in chromosome colocalization.
This is shown by the average square distance between the
two chromosomal strings (relative to the system linear size
L): d*(1)=3Y (r*(z,1))/ L*N, where N is the number of beads
in each string (here N=L) and (r*(z,1)) is the average, over
different realizations, of the square distance of the beads at
“height” z at time 7 on the two chromosomes. Figure 1 shows
d*(¢) [which starts from d*(0)=100%] as a function of time,
t, for two relevant values of c¢. For instance, for ¢=2.5%,
d*(7) at long times converges almost to zero: this is the sign
that the two “chromosomes” have colocalized; a typical pic-
ture of the system final state is shown in the lower right
panel in Fig. 2 (real DNA recognition sequences could be
locally bound without such a precise alignment as in our
simple model). Conversely, when particle density is small
enough (say for ¢=0.3%), d(t) saturates to a finite plateau
value of the order of the system size (around 40% of L?),
corresponding to the average distance of two independent,
nonoverlapping strings undergoing Brownian motion in a
box of size L, a typical configuration being shown in Fig. 2,
upper right panel.

As seen in Fig. 1, after an initial Brownian linear behavior
in t, d*(t) approaches its equilibrium value approximately
exponentially in 7, d*(t)<exp(—t/7) (superimposed fits in
Fig. 1). From this relation, we extract the equilibration time
scale, 7. As shown in the inset of Fig. 1, 7is approximately a
power law in ¢ (superimposed fits in Fig. 1, inset): 7~c*,
with an exponent « close to 1 (smoothly depending on Ey
and E;). 7 is also a function of Ey and E,. When Ey rises,
molecules tend to cluster more tightly around each polymer
segment making their dynamics slower and decreasing the
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FIG. 1. (Color online) Main panel shows the evolution of the
square distance between “chromosome recognition sequences,”
d*(7) (expressed as a fraction of the system size, L), as a function of
time, ¢ (in log;, scale), for the given values of the concentration of
molecular mediators, ¢ (here the molecule-chromosome and
molecule-molecule affinities are, respectively, Ex=1.2kT and E|
=0). Chromosomes are initially at a distance L, i.e., d*(0)=100%.
At long times d>(r) plateaus to its equilibrium value approximately
exponentially (superimposed fit), which for ¢=0.3% corresponds to
the expected average square distance between independent ran-
domly diffusing directed strings, ~40%; for c=2.5%, instead, d*(r)
collapse to almost zero, signaling that the two chromosomes have
colocalized. Inset shows (in a range of values of Ey and E;) that the
characteristic time to approach equilibrium, 7 (derived from expo-
nential fits), increases as a function of ¢. The superimposed fits are
power laws.

chances of a random locking encounter between them. Con-
versely, by increasing E,,, molecules can aggregate facilitat-
ing segment coupling via cooperative-like behaviors. So, 7
increases with Ey and decreases with E; (see Fig. 1, inset).

Phase diagram. Colocalization is attained when c¢ is
higher than a given threshold, as shown by the equilibrium
value, d*(c), of their distance plotted as a function of ¢ in
Fig. 2, left panel. Above a critical point ¢, [approximately
defined by the inflection point of d*(c), e.g., ¢,=0.7% for
Ey=1.2kT], d*(c) rapidly goes to zero and the system is
found in the regime where chromosomes are tightly colocal-
ized, the “colocalization phase.” Conversely, when ¢ is small
enough, say below ¢, d*(c) has the same value found for
two noninteracting Brownian strings; the effective attraction
is too small and chromosomes float away one from the other.
This is the “random phase” where chromosomes are indepen-
dent. The phase transition, in this finite-size system, occurs
when entropy loss due to string colocalization is compen-
sated by particle energy gain as they bind both strings. Ac-
tually, the transition is found in a broad region of the (Ey,c)
plane, as shown in Fig. 3, where the system phase diagram is
plotted in a range of typical biochemical values of binding
energies Ey.

The phase diagram shows that any binding energy above a
threshold of the order of a weak h-bond would work to attain
chromosome pairing; the higher Ey, the smaller the required
mediator concentration, c¢. So, molecules binding specific
DNA sequences (e.g., 10-20 bases long) with comparatively
higher overall energies (say 20kT) would fit well in our pic-
ture of colocalization. Specificity of colocalization among
many a chromosome pair could be, indeed, obtained by sets
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FIG. 2. (Color online) Left panel The equilibrium average chro-
mosome square distance, d”, from Fig. 1 (Ex=12kT, E,=0) is
shown as a function of ¢ (in log, scale): for ¢<c,=0.7%, d*
approaches values as big as the system size and chromosomes are
randomly and independently diffusing (horizontal dotted line gives
the independent diffusion value d> ~40%L?); for ¢> ¢, d* rapidly
decays to zero, showing that they have colocalized. Around cy,
there is a narrow crossover regime where chromosomes are only
transiently colocalizing. Right panels show pictures of typical equi-
librium configurations, in the “independent” (upper panel, ¢
=0.3%) and “colocalized’ phase” (lower panel, c=2.5%). Molecular
mediators are pictured as orange floating particles.

of molecules binding only specific homologs. From experi-
ments in C. elegans we know, for instance, that HIM-8 pro-
teins binds only X chromosomes, while ZIM-2 only V chro-
mosomes. The phase diagram also suggests a different path
to attain colocalization: for a given physiological concentra-
tion of binding molecules, c; the cell could just chemically
act on the DNA recognition sequences to increase their af-
finity, Ey, to molecules: this would induce spontaneous colo-
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FIG. 3. (Color online) The system phase diagram is plotted in
the (Ex,c) plane (the ¢ axis is in log;, scale). The transition line,
¢y(Ey), delimiting the phase where chromosomes move indepen-
dently from the phase where they colocalize, is marked by filled
circles in the case Ey=0. For comparison, the transition line is also
plotted in the case Ey=1.2kT (empty circles). Fits superimposed to
the two transition lines are inverse power laws (see text).

calization as well (see Fig. 3). In the presence of a nonzero
reciprocal affinity, E,, when molecular mediators can form
aggregates [24,25], the phase diagram topology is not al-
tered, but the location of the transition line ¢, (Ey) moves
toward higher concentrations (see Fig. 3).

The transition from the colocalized to the independent
state may be understood by a simplified calculation. Suppose
the two polymers are in the colocalization regime and denote
their trajectory through the system r,(z) and r,(z). Their en-
ergy E can be approximated as the sum of the bending en-
ergy and the effective interaction potential, V. For the sake of
simplicity, we neglect self-repulsion and expand V to second
order around its minimum. So we have [20]

L
E[r,rp]= f dZ{ %’[(ri)z + (ri)2] + %(rl - 1'2)2}, (1)
0

where r{=dr(z)/dz, b is the tilt modulus, and v=V"(0). As-
sume that a polymer requires a distance z=I to span its typi-
cal transverse fluctuation, Ar. From Eq. (1), the energy of a
segment / is E(I) = (bl~'+vI)Ar*/2. The equilibrium value of
1, lo, is obtained by minimization: JE/ ﬂl|, =0. This gives
ly=\b/v, corresponding to an energy E(lo)— NN
equilibrium, the equlpartltlon theorem implies that E([,)
=kT, so we get Ar’=kT/ \Vbv. We can apply a criterion in the
manner of Lindemann to establish the maximal value of Ar?
above which colocalization is no longer sustainable against
thermal fluctuations,

AP = fod®, )

where d is a scale of the order of the range of V(r) and f,, is
the Lindemann constant, say fo~ O(10~ 1). Equation (2) then
implies kT/ Vbv ~ fod2 As the interaction potential is gener-
ated by molecules (taken from a concentration ¢) binding
either polymer (the binding energy being 2Ey), at a first
rough approximation we have v «cEy, ensuring the physical
constraint whereby v vanishes when either c—0 or Ex—0.
More generally, the relation between v, ¢, and E, can involve
more complex powers (e.g., v C“Ef). By substitution in Eq.
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(2), we get a power-law expression, with an exponent v (e.g.,
v=p/a), for the colocalization and independence transition
line in terms of ¢ and Ey,

Ctr(EX) -~ E}_(V' (3)

Figure 3 shows an approximate power-law fit, with v=2,
to the numerically derived transition line ¢, (Ey) in both
cases Ey=0 and Ey=1.2kT. The fit can be further improved
by introducing a minimal threshold energy E* ~ 0.8kT, below
which no transition is possible: ¢ (Ex) ~ (Ex—E*)™".

Conclusions. In summary, we have described a general
colocalization mechanism whereby specific regions of a pair
of chromosomes can recognize each other and align. Under
this model, physical juxtaposition of recognition sequences
is mediated by sequence-specific molecular factors binding
DNA via weak, nonpermanent, biochemical interactions. We
showed that by tuning the concentration of molecular media-
tors or DNA affinity to them, the cell controls a switch for
pair formation and release, a mechanism having general and
robust roots [19] in a thermodynamics phase transition oc-
curring in the system. In an alternative scenario, proteins
able to bind only one DNA binding site, but linked by
protein-protein interactions, could also act for colocalization;
as a pair of linked proteins can be represented, in the model
we discuss here, via a single molecular mediator; we expect
that the thermodynamics picture is unchanged.

While other biological processes can help pairing, our
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mechanisms explain how the minimal “ingredients” discov-
ered in experiments (i.e., soluble molecules and DNA bind-
ing sites) can drive early pairing and are sufficient for it. As
our model provides the required general thermodynamic
grounds, it is very schematic [21]: for instance, only two
chromosomal segments are considered. Simulations with
many pairs of “chromosomes” show longer time scales to
approach equilibrium, as expected in a crowded environ-
ment. Yet the universality of the statistical mechanics phe-
nomenon is not affected and the overall thermodynamic
phase diagram is unchanged. As discussed in, e.g., [5], one
of the advantages of a pairing initially based on nonperma-
nent interaction, as in the scenario discussed here, is to pre-
vent ectopic association between nonhomologous and avoid
topologically unacceptable entanglement of chromosomes,
leaving space for adjustments. Early recognition sequences
can later seed a correct chromosome-wide homologous pair-
ing. Other chromosome-unspecific molecular mediators
could help the overall process.

Prone to experimental tests (e.g., threshold in ¢, dynam-
ics, ...), our model can be used to predict the effects of DNA
chemical modifications (changes to Ey) and deletions (inser-
tions) [decrease (increase) the number, L, of DNA binding
sites). Many other cell processes involve the organization of
chromosomes in nuclear space (e.g., X pairing at the onset of
X-inactivation [22-25], chromosome architecture [26]), and
the mechanism described here could be relevant to those
cases as well.
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